Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal.

نویسندگان

  • Lutfi Abu-Elheiga
  • Martin M Matzuk
  • Parichher Kordari
  • WonKeun Oh
  • Tattym Shaikenov
  • Ziwei Gu
  • Salih J Wakil
چکیده

Acetyl-CoA carboxylases (ACC1 and ACC2) catalyze the carboxylation of acetyl-CoA to form malonyl-CoA, an intermediate metabolite that plays a pivotal role in the regulation of fatty acid metabolism. We previously reported that ACC2 null mice are viable, and that ACC2 plays an important role in the regulation of fatty acid oxidation through the inhibition of carnitine palmitoyltransferase I, a mitochondrial component of the fatty-acyl shuttle system. Herein, we used gene targeting to knock out the ACC1 gene. The heterozygous mutant mice (Acc1(+/-)) had normal fertility and lifespans and maintained a similar body weight to that of their wild-type cohorts. The mRNA level of ACC1 in the tissues of Acc1(+/-) mice was half that of the wild type; however, the protein level of ACC1 and the total malonyl-CoA level were similar. In addition, there was no difference in the acetate incorporation into fatty acids nor in the fatty acid oxidation between the hepatocytes of Acc1(+/-) mice and those of the wild type. In contrast to Acc2(-/-) mice, Acc1(-/-) mice were not detected after mating. Timed pregnancies of heterozygotes revealed that Acc(-/-) embryos are already undeveloped at embryonic day (E)7.5, they die by E8.5, and are completely resorbed at E11.5. Our previous results of the ACC2 knockout mice and current studies of ACC1 knockout mice further confirm our hypotheses that malonyl-CoA exists in two independent pools, and that ACC1 and ACC2 have distinct roles in fatty acid metabolism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Saccharomyces cerevisiae Hyperrecombination Mutant hpr1D Is Synthetically Lethal with Two Conditional Alleles of the Acetyl Coenzyme A Carboxylase Gene and Causes a Defect in Nuclear Export of Polyadenylated RNA

In a screen for mutants that display synthetic lethal interaction with hpr1D, a hyperrecombination mutant of Saccharomyces cerevisiae, we have isolated a novel cold-sensitive allele of the acetyl coenzyme A (CoA) carboxylase gene, acc1, encoding the rate-limiting enzyme of fatty acid synthesis. The synthetic lethal phenotype of the acc1 hpr1D double mutant was only partially complemented by exo...

متن کامل

gurke and pasticcino3 mutants affected in embryo development are impaired in acetyl-CoA carboxylase.

Normal embryo development is required for correct seedling formation. The Arabidopsis gurke and pasticcino3 mutants were isolated from different developmental screens and the corresponding embryos exhibit severe defects in their apical region, affecting bilateral symmetry. We have recently identified lethal acc1 mutants affected in acetyl-CoA carboxylase 1 (ACCase 1) that display a similar embr...

متن کامل

Fatty acid-requiring mutant of Saccharomyces cerevisiae defective in acetyl-CoA carboxylase.

The isolation and biochemical properties of a Saccharomyces cerevisiae mutant (acc1-167) defective in acetyl-CoA carboxylase [acetyl-CoA:carbon-dioxide ligase (ADP forming), EC 6.4.1.2] activity are described. The mutant is deficient in de novo biosynthesis of long-chain fatty acids and specifically requires a saturated fatty acid of chain length 14-16 C atoms for growth. Fatty acid synthetase ...

متن کامل

Acetyl coenzyme a carboxylase activity in developing seedlings and chloroplasts of barley and its virescens mutant.

Acetyl coenzyme A (CoA) carboxylase activity of whole tissue homogenates and chloroplast preparations was analyzed as the acetyl-CoA-dependent incorporation of [(14)C]bicarbonate into an acid-stable product. The absolute requirement for ATP and MgCl(2), the complete inhibition with avidin, and end-product analysis were consistent with the presence of acetyl-CoA carboxylase activity. Little diff...

متن کامل

Resistance of various biotypes of Canary grass (phalaris. Spp) to acetyl-CoA carboxylase-inhibiting herbicides.

Little seed canary grass (Phalaris minor L.) is a major weed in wheat fields in some parts of Iran. To evaluate the efficacy of molecular and greenhouse methods in detecting the resistance of 49 biotypes of canary grass(Phalaris. Spp) to acetyl-CoA carboxylase-inhibiting herbicides, two methods including whole plant screening and PCR-based molecular methods were applied. Results showed that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 34  شماره 

صفحات  -

تاریخ انتشار 2005